
www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

Executive Summary

In this white paper, we give an overview of the best practices to ensure secure,

performant, and resilient Apache Tomcat deployments, including sections on

clustering, load balancing, performance, security, and more.

W H I T E PA P E R

Apache Tomcat Best Practices
How to Deploy for Lasting Performance, Security, and Resiliency

WHITE PAPER

Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

Contents

Tomcat Deployment Best Practices 3
Clustering ... 3

Load Balancing ... 5

Performance .. 6

Security ... 8

Applied Use Cases ... 9
Use Case #1: Scalability ... 9

Use Case #2: Multiple Applications .. 10

Cluster Setup and Configuration Overview10

Closing Thoughts ..15

Finding Dependable Technical Support for

Your Deployments...15

WHITE PAPER

3 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

Tomcat Deployment Best Practices
Running Apache Tomcat as an application container

for mission-critical applications is a decision many

companies make every day. Unfortunately, this is often

where the decision making stops.

Unoptimized Tomcat deployments can suffer from

increased hosting overhead, increased risk of data

breaches, and even put the applications at risk of

catastrophic failures.

An optimized Tomcat deployment features a system

configuration that will protect these applications

even in the event of catastrophic system failure. This

is where applying best practices in Tomcat clustering,

load balancing, performance, and security become

paramount.

CLUSTERING

In the next sections, we look at some of the best practices

in these areas, and how teams can configure Tomcat for

lasting stability and success.

By implementing a solid clustering design, you protect

your company from systems failure. This section will

walk through the core concepts of clustering and why

you should cluster your Tomcat application servers. It

will look at the multiple options for clustering setups,

and help you identify which one is the best for your IT

infrastructure. Finally, we will review some detailed

example configurations and common issues when

clustering Apache Tomcat.

WHAT IS CLUSTERING?

Clustering, when referring to information technology

systems, is two or more independent interconnected

systems (nodes), interlinked to provide reliability.

Reliability can come in the form of high-availability,

improved scalability, improved application availability,

and ease of maintenance.

Independent interconnected systems sound

complicated, although they are not. In the case of this

paper, we are referring to Tomcat systems.

An instance of Tomcat is an independent system.

Clustering instances of Tomcat makes them

interconnected. Tomcat instances in a Tomcat cluster are

often referred to as a node. Individual components in

any network configuration can normally be referred to as

nodes, but for the duration of this paper, we are referring

to nodes as Tomcat instances.

A Tomcat cluster is a group of Tomcat instances that are

connected. There are different ways that they can be

connected. The Tomcat instances can be running on the

same physical device, same virtual device, or disparate

systems.

WHY CLUSTER YOUR TOMCAT DEPLOYMENT?

Clustering can solve different problems. For instance,

you have a web application, serving approximately

five thousand concurrent requests, running on your

server. Under this load, your single server is maxed out.

New users are receiving 404 errors. Supporting larger

numbers of concurrent requests is one of the advantages

of high-availability clustering. The goal of high-availability

clustering is 99.999 percent (“five nines”).

Tomcat clustering is also useful for engineering failovers.

If your business is running a web application that earns

income for your business and this web application is

running in a non-clustered environment, you are at

risk. If your application is on a Tomcat server that is

not clustered and the Tomcat server fails, that source

of revenue stops generating money every second the

system is down. By setting up a simple Tomcat cluster

containing two instances, this issue is preventable. In

a properly configured cluster, all requests to the failed

server will be directed to the remaining working instance.

This will preserve your revenue stream even if there is

performance degradation from losing 50 percent of the

nodes in the cluster.

These are just some examples of why it pays off to

cluster Tomcat, or at least research a little more. In

addition to these examples above, Tomcat improves

your systems availability. High-availability is a goal that

many companies seek to improve the appearance and

availability of their services.

WHITE PAPER

4 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

A normal system’s yearly average uptime is called its

availability. High-availability is a pre-arranged, contracted

level of performance that will be maintained during

the contract length. Granted, that is not very easy to

understand. An example of high-availability could be:

your web server is guaranteed to be available “five

nines.” This means that in a given year the server will have

a maximum of 5.26 minutes of unscheduled downtime.

To achieve high-availability you need to implement

geographic separation. Geographic separation, as it

applies to server configuration, is installing nodes of

the cluster in geographically different locations. This

provides safety against regional power outages and other

locational risks like storms and floods.

FINDING THE BEST CLUSTERING APPROACH FOR
YOUR ARCHITECTURE

Everyone wants to build a reliable, stable, and available

application container platform. But, in order to do so you

need to determine which clustering configuration fits you

and your business the best.

In determining your configuration, you must evaluate

the resources at hand. This section will discuss possible

options for your resources, without actually taking your

resources into consideration. The next section will make

suggestions as to which configurations your company

may leverage depending on the resources available.

VERTICAL CLUSTERING

A vertical cluster expands vertically. A horizontal cluster

expands, you guessed it, horizontally. What does this

mean? A vertically expanding cluster has a limited

horizontal layout. A horizontal layout would consist of

multiple systems and/or resources.

A vertical cluster is on a single machine. A machine can

be many things, including a physical device or a virtual

host. As need increases, Tomcat instances are spawned

on the same machine, using configuration tweaks that

allow multiple instances to run on the same system.

HORIZONTAL CLUSTERING

A horizontal cluster contains Tomcat instances running on

separate machines. If demand for processing increases

and you had a pure, horizontal cluster configuration, the

network technician (or you) would install a new machine,

virtual or physical, and on that machine is a new Tomcat

instance.

HYBRID CLUSTERING

Real life is often very different from dictate. Companies

rarely have a pure horizontal or vertical cluster

configuration. Most systems are hybrids. A hybrid

cluster is a mixture of vertical and horizontal clustering to

facilitate a specific need and/or to match the hardware

provided.

HOMOGENOUS VS. HETEROGENOUS
CLUSTERING

Is your setup going to be for multiple applications, or just

a few, or just one? Do you have applications that require

specific hardware? This determines whether or not you

decide to use a heterogeneous or homogeneous setup.

A homogeneous setup is very common. Companies will

often duplicate their Tomcat environment, launching

servers on many devices with a simple copy of the

Tomcat directory. A Tomcat cluster that has the same

web applications deployed on all nodes is considered

homogeneous.

Homogeneous setups can be hard to keep truly

identical. Sometimes, especially after node failure and

replacement, it can be hard to synchronize the Tomcat

instances. The best way to do this is to create an image of

the Tomcat setup from a node designated as the primary

node. As long as this image stays up to date you can

distribute it over as many Tomcat setups as you prefer.

WHITE PAPER

5 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

Heterogenous setups, on the other hand, can have

different web applications deployed on different nodes

of a cluster. With a handful of applications, heterogenous

clustering can be fairly simple. When an organization

has a large number of unique web applications, setting

up, configuring, and maintaining that cluster can be

complicated.

LOAD BALANCING

Load balancing happens outside of the Tomcat cluster

but is still an important consideration for teams deploying

Tomcat. For the purposes of this document, we are

concerned with Apache Httpd server and the built-in load

balancing/gateway features, as this is a free and common

solution within many enterprise systems. However, the

open source version of NGINX — a common and free

load balancing option — can be implemented in similar

fashion to Apache HTTPD.

APACHE HTTPD

When load balancing with Apache HTTPD the main

consideration is which protocol will be used. The two

options to consider here are either AJP or HTTP(s). The

most common Tomcat configuration that we see is

Tomcat running behind some sort of Web based proxy

like Apache HTTPD or NGINX. However, for decades the

only option to do this was to use AJP, so a lot of current

AJP usage is based on industry inertia more than anything

else.

There are definitely some security (no TLS/SSL support)

and support (no HTTP 1.2 support) considerations

that need to be made here, but from a performance

perspective the fact that AJP is a binary protocol means it

can provide some performance benefits.

In most environments, it is not nearly as important as it

used to be. Back when 10/100 ethernet was the norm

and bandwidth came at a premium, using a binary

protocol over a text-based protocol like HTTP(s) was a no

brainer.

Today, where gigabyte ethernet is the standard for

any network backplane, the binary aspect of AJP has

become a lot less important. Bandwidth constrained

environments still exist, so it is common to see small

Tomcat environments running on remote IoT installations.

In such cases choosing a binary based protocol like AJP in

spite of its security and support issues might make sense.

Regardless of the method, we want to make sure we

are tuning Tomcat to handle the number of connections

that will be thrown its way — whether that’s from AJP or

HTTP(s). If your web proxy is configured to handle 1000

connections but your Tomcat server is only configured to

handle 500, you are in for a bad time.

After deciding which protocol to use, the next decision

is which Apache HTTPD module to use. If AJP is being

used then it would be mod_jk or mod_proxy_ajp. If the

decision was made to utilize HTTP(s) then mod_proxy

and mod_proxy_balacer would be used.

Required if secure
communication over
HTTPS is needed

Can still be uses with the
AJP protocol
(mod_proxy_ajp)

No need to compile a
separate module, comes
default with Apache 2.2
and higher

Pros

mod_proxy/mod_proxy_balancer

Limited load balancing
configurations, only basic
load balancing available

Does not support
domain- based clustering
(introduced in AJP 1.2.8)

Cons

Support for more
advanced load
balancing options

Better node failure
detections

Support large AJP packets

Pros

mod_jk

Insecure protocol, no
support for TLS. AJP is a
binary protocol, but it is not
encrypted, even when the
shared secret is configured

Has to be built and
maintained separately from
Apache HTTPD)

Cons

WHITE PAPER

6 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

OTHER LOAD BALANCING OPTIONS

One also might consider whether or not your

environments even need a proxy service at all. The

Coyote web server that ships with Tomcat is a more than

capable HTTP server and can handle serving up web

content just fine. This would be a common configuration

found when enterprises implement hardware based load

balancer like an F5 LTM.

HARDWARE LOAD BALANCING

Another common enterprise configuration option

for load balancing is the hardware load balancer. A

hardware load balancer (HLB) performs the same tasks

as a software balancer (like the one in the Apache Httpd

server). The main difference between a software balancer

and a hardware balance (besides price), is resources.

An HLB has dedicated hardware resources (RAM),

processor, network adapters, etc. This allows hardware

balancers to perform at a much more efficient rate, while

providing more features. This is also an infinitely more

expensive method, as you can find many free open

source load balancing solutions. In most cases, these

software-based open source solutions are perfectly

acceptable. However, some use cases may require a

dedicated hardware solution. Applications that see

sustained high usage, (e.g., with concurrent users in

the 100,000+ range) will most likely want to consider a

hardware based solution.

In addition to ultra-high usage profiles, applications that

require global load balancing would need to consider

this type of hardware-based solution as well. Though

in cases where ultra-high usage performance is not a

requirement, but global load balancing services are still

needed, paid software based load balancing services

such as NGINX-Plus are available.

PERFORMANCE

Most Tomcat performance tuning is specific to the

application and takes place in setting up the right JVM

options and sizing. Making sure you have an optimal

system environment, the appropriate amount of compute

cycles available, enough memory to support the JVM

and system OS overhead, enough disk and enough I/O

throughput to support the given application) is a must. To

properly tune your Tomcat environment, here are some

best practices to make sure you understand the needs of

the application Tomcat will be running.

THE IMPORTANCE OF PROFILING YOUR
APPLICATION

The first place to start with any performance tuning on

any platform is with the application itself. If you don’t

profile your application, you can’t answer questions like:

• Do you know how much time your web application

spends in garbage collection?

• Do you know how many threads your app uses?

• Do you know what its longest running query is?

• How many disk operations does your app perform

at any given time?

• Do you know the answers to these questions when

you have 10 concurrent users? How about 100?

1000?

Profiling your web application is a must! It also happens

to be one of the most overlooked aspects of application

development we run into.

When we start a Tomcat professional services

engagement and ask if they know what their average

garbage collection times are under load, the answer

is all too often “no”. In way too many cases, garbage

collection logs are not even being collected.

WHITE PAPER

7 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

Building an application profile does not only have to

occur when doing load/performance testing (though

it should; more on that later). We can build a real-world

application profile over time by making sure we are

collecting the right data and metrics.

By making sure we are collecting garbage collection

logs, capturing regular thread dumps, performing access

logging, gathering database call times, etc., we can

make sure we have the data to review over time to get

a better understanding of how applications are running

and what they look like in a real-world scenario.

Of course, there is not much value in collecting this data

if no one is looking at it. A review of an application’s

performance profile should be baked into every

release cycle.

AUTOMATE YOUR LOAD AND

STRESS TESTING

As mentioned in the previous section, you don’t have to

do load testing to build an accurate application profile,

but you should.

In a perfect world, we would have a 1 to 1 replica of our

production environment to perform load and stress

testing, but rarely do we find this to be the case. Granted

it is a lot easier to spin up a production like environment

these days compared to 20 years ago when we were

doing this all on bare metal, but you don’t have to have

a perfect production replica to perform worthwhile load

and performance stress testing.

Taking a scaled-down model of your production

environment and pushing it to its breaking point with

a utility like JMeter will still provide your team with

invaluable information and create a baseline that the rest

of your performance tuning can be based upon.

Wondering what your JVM memory sizing should

be? Wondering if your application would benefit

from enabling compressibleMimeType? Load and

performance testing will tell you.

We all know how tempting it is (and how often it

happens) to skip load and performance testing, but just

like the previous tip, this should be baked into every

release cycle. With modern CI/CD tools like Jenkins and

GitLab, automating your load and stress testing to have

them run in your CI/CD pipeline is easier than ever.

NEEDS BASED TUNING

Most Tomcat tuning is “needs” based tuning; in other

words, we are tailoring the Tomcat configuration to the

given application it is running. Now that we know what

our application and performance profiles look like we can

start building out environments to match these profiles.

Does the application churn CPU? Does it need a ton of

memory for a large JVM? Does it have a lot of disk I/O?

Now that we know these things, we know how to build

out the compute environment in a way that matches the

needs of the application and the projected users that are

going to be using the system.

We can also start making fact-based decisions on specific

Tomcat settings like number of threads, max keepalive

times etc. Does your application have a lot of long

running queries? If so, then we may need to set longer

keepalive timeouts than we normally would. Or, on the

other end of the spectrum, does the application perform

a lot of short duration queries but fire off a lot of them at

one time? In that case we would want to consider short

“keepalive” timeouts and a larger number of connections

in the connection pool.

WHITE PAPER

8 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

OTHER PERFORMANCE CONSIDERATIONS

Be careful to not over-tune your environment. While not

as common, we do run into environments that have way

too many unnecessary Java arguments, or they are set

incorrectly, and the default values would have provided

better performance to begin with.

For the naturally curious, it is tempting to tinker with

your environments — and that is good, but just not

in production. We want to be sure we are using fact-

based evidence when deciding which parameters or

Java arguments we are introducing into our productions

environments, and not just playing the guessing game.

Also, when considering system resources, the 70/30

rule is always a good general rule to follow. Hitting

70% system utilization while reserving 30% system free

resources insure you always have breathing room for

unexpected spikes in utilization. While not a fixed rule,

when an environment starts seeing consistent utilization

of resources sitting in the 80% plus range it is a good

idea to start planning to add additional resources. When

system utilization is consistently sitting in the 90% plus

range that plan should be executed sooner rather

than later.

SECURITY BEST PRACTICES

Following known security best practices for any piece of

software is important. And, as we show below, many of

the basic security best practices for Tomcat are ones you

can apply to other pieces of software within your web

applications.

That said, Tomcat does carry some default exposures

that need to be corrected on new deployments. The best

practices listed below, while far from comprehensive, are

a good place to start when deploying Tomcat.

DO NOT RUN TOMCAT AS THE ROOT USER

One of the most basic security best practices for Tomcat

is to not run Tomcat as the root user. Creating a user with

minimum OS permissions and running the Tomcat server

as that user should be the first thing you do.

REMOVE DEFAULT SAMPLES AND TEST
APPLICATIONS

Tomcat also comes with some default samples and test

applications. These samples are known to contain some

vulnerabilities of their own and should be removed from

your environment.

SET YOUR TOMCAT PERMISSIONS CAREFULLY

Tomcat itself should be set to only have the necessary

permissions, should your server ever be hijacked.

DISABLE SUPPORT FOR TRACE REQUESTS

Disabling support for TRACE requests prevents browsers

from being exposed to a cross-site scripting attack. To

prevent information about your Tomcat server from being

broadcast, you will want to disable the X-Powered-By

HTTP header. This header broadcasts information such

as what version of Tomcat you are running and other

sensitive information. This can be disabled in the server.

xml file.

DISABLE SSLV3 PROTOCOLS

POODLE was a well-publicized attack that targeted

the SSLv3 protocols, so you will need to disable that in

Tomcat before you get it up and running. Maintaining

detailed logs is also key to ensuring your Tomcat server

and environment security. This applies to user access,

application traffic, Tomcat internals, the OS/firewall, etc.

WHITE PAPER

9 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

LOG YOUR NETWORK TRAFFIC

To enable logging of network traffic in Tomcat, use the

AccessLogValve component. This can be configured on a

host, engine, or context basis and will create a standard

web server log file for traffic to any resources associated

with it. The Access Log Valve supports a variety of

attributes to control the output of the valve.

BE CAREFUL WITH THE TOMCAT MANAGER APP

The Tomcat Manager app is a built in webapp used to

manage Tomcat instances, application deployment, and

other various settings. For security purposes this console

is disabled by default, so if you enable it, be sure you

treat it appropriately.

USE REALMS TO CONTROL RESOURCE ACCESS

Realms are another method of controlling access to

resources in Tomcat. Realms are components that access

databases of users that should have access to a given

application or group of apps, and the roles and privileges

they have within the application once logged in. The

most secure of the realms is the LockOut realm which

places a limit on the number of times a user can attempt

to authenticate themselves.

Applied Use Cases
Tomcat is used successfully in many types of web

applications, with different deployment patterns able to

meet needs for many enterprise use cases. In the sections

below, we look at two of those use cases, including

horizontal scaling and enterprises managing several

applications.

USE CASE #1: SCALING

In this use case, the client has 4 low-end servers, meaning

they have one processor with 1- 4 gigabytes of RAM. This

would be an ideal situation for a horizontal cluster. Each

member of the cluster would be able to run one instance

of Tomcat efficiently. One of the servers could be used as

a balancer running Apache Httpd server.

If your situation was a bit different, and you had better

servers, you could consider a hybrid cluster. If there are

servers available with two or more processors and a large

amount of ram (8 gigabytes or more) this would be ideal

for multiple Tomcat instances. In this configuration you

can set up a hybrid cluster by running multiple instances

of Tomcat on multiple machines, and multiple instances

of Apache Httpd to handle the load of load balancing.

This configuration could look something like this:

Internet - Incoming Request

Server 1 - Apache Web Server

Server 3 - Tomcat Instance 2 Server 4 - Tomcat Instance 3Server 2 - Tomcat Instance 1

Internet - Incoming Request

Load Balancer

Server 1
Apache Web Server 1
Apache Web Server 2

Server 2
Apache Web Server 3
Apache Web Server 4

Server 3
Tomcat Instance 1
Tomcat Instance 2

Server 4
Tomcat Instance 3
Tomcat Instance 4

Server 5
Tomcat Instance 5
Tomcat Instance 6

Server 6
Tomcat Instance 7
Tomcat Instance 8

Server 7
Tomcat Instance 9

Tomcat Instance 10

Server 8
Tomcat Instance 11
Tomcat Instance 12

WHITE PAPER

10 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

USE CASE #2: MULTIPLE APPLICATIONS

Tomcat can also accommodate organizations that want

to deploy multiple applications. How the applications

are divided into Tomcat nodes is up to the user. However,

the configuration of these nodes in Tomcat will be a little

more complicated.

If an organization has an application that requires heavy

processing and substantial amounts of RAM (HPR1,) you

can set up this application on two nodes by itself. After

this, take the remaining applications (GUI) and place

them on two different nodes in the cluster. This will

prevent the GUI application from being bogged down

when HPR1 is consuming the CPU and RAM. This cluster

might look like this:

There are many things to take into consideration when

designing and building your cluster. If a large company

is relying on you to provide a reliable, highly-available

application implementation, then clustering and load

balancing is the right choice. Regardless of if you are

new to clustering, or an old hand, purchase a support

contract. There are companies that will provide open

source software support for your Tomcat and Apache

Httpd configuration. This will allow you to offer your

customers an extremely reliable, available service while

at the same time providing someone to turn to if you run

into problems.

Cluster Setup and Configuration
Overview
This is not a complete step-by-step tutorial on cluster

creation, but we will provide you with the tools you

can use to implement a cluster rapidly and effectively.

Whether you have created many clusters in the past or

this is your first attempt, we hope that you will be able

to learn something, whether it be basic or advanced,

from the information discussed in this paper. To limit the

liability of your attempt at creating a cluster, you can set

up a machine, virtual or physical, just for this task.

Please note that you can run multiple Tomcat instances

on a single virtual/physical machine by tweaking just

a few settings, mainly port numbers so the instances

don’t interfere with each other. The configuration of

these Tomcat instances is well outside the scope of this

document, although it is not difficult to accomplish.

Below are two server configurations that you can use

to run a simple cluster, just start with two instances of

Tomcat 10, and replace the corresponding server.xml file

with the .xml information provided below.

Internet - Incoming Request

Load Balancing / Proxying
(Possibly Multiple Servers)

HPR2 GUI

GUI

GUI

HPR1

HPR App Requests GUI App Requests

Tomcat Cluster
Session replication between nodes

WHITE PAPER

11 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

SERVER.XML 1

<?xml version=’1.0’ encoding=’utf-8’?>

<Server port=”50005” shutdown=”SHUTDOWN”>

 <Listener className=”org.apache.catalina.startup.VersionLoggerListener” />

 <Listener className=”org.apache.catalina.core.AprLifecycleListener” SSLEngine=”on” />

 <Listener className=”org.apache.catalina.core.JreMemoryLeakPreventionListener” />

 <Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener” />

 <Listener className=”org.apache.catalina.core.ThreadLocalLeakPreventionListener” />

<GlobalNamingResources>

 <Resource name=”UserDatabase” auth=”Container”

 type=”org.apache.catalina.UserDatabase”

 description=”User database that can be updated and saved”

 factory=”org.apache.catalina.users.MemoryUserDatabaseFactory”

 pathname=”conf/tomcat-users.xml” />

 </GlobalNamingResources>

<Service name=”Catalina”>

 <Connector port=”51112” protocol=”HTTP/1.1”}

 connectionTimeout=”20000”

 redirectPort=“51114 “ />

<Engine name=”Catalina” defaultHost=”localhost”>

 <Cluster className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”/>

 <Realm className=”org.apache.catalina.realm.LockOutRealm”>

 <Realm className=”org.apache.catalina.realm.UserDatabaseRealm”

 resourceName=”UserDatabase”/>

 </Realm>

 <Host name=”localhost” appBase=”webapps”

 unpackWARs=”true” autoDeploy=”true”>

 <Valve className=”org.apache.catalina.valves.AccessLogValve” directory=”logs”

 prefix=”localhost_access_log” suffix=”.txt”

 pattern=”%h %l %u %t "%r" %s %b” />

 </Host>

 </Engine>

 </Service>

</Server>

WHITE PAPER

12 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

SERVER.XML 2

<?xml version=’1.0’ encoding=’utf-8’?>

<Server port=”50006” shutdown=”SHUTDOWN”>

 <Listener className=”org.apache.catalina.startup.VersionLoggerListener” />

 <Listener className=”org.apache.catalina.core.AprLifecycleListener” SSLEngine=”on” />

 <Listener className=”org.apache.catalina.core.JreMemoryLeakPreventionListener” />

 <Listener className=”org.apache.catalina.mbeans.GlobalResourcesLifecycleListener” />

 <Listener className=”org.apache.catalina.core.ThreadLocalLeakPreventionListener” />

 <GlobalNamingResources>

 <Resource name=”UserDatabase” auth=”Container”

 type=”org.apache.catalina.UserDatabase”

 description=”User database that can be updated and saved”

 factory=”org.apache.catalina.users.MemoryUserDatabaseFactory”

 pathname=”conf/tomcat-users.xml” />

 </GlobalNamingResources>

 <Service name=”Catalina”>

 <Connector port=”51112” protocol=”HTTP/1.1”

 connectionTimeout=”20000”

 redirectPort=“51114 “ />

 <Engine name=”Catalina” defaultHost=”localhost”>

 <Cluster className=”org.apache.catalina.ha.tcp.SimpleTcpCluster”/>

 <Realm className=”org.apache.catalina.realm.LockOutRealm”>

 <Realm className=”org.apache.catalina.realm.UserDatabaseRealm”

 resourceName=”UserDatabase”/>

 </Realm>

 <Host name=”localhost” appBase=”webapps”

 unpackWARs=”true” autoDeploy=”true”>

 <Valve className=”org.apache.catalina.valves.AccessLogValve” directory=”logs”

 prefix=”localhost_access_log” suffix=”.txt”

 pattern=”%h %l %u %t "%r" %s %b” />

 </Host>

 </Engine>

 </Service>

</Server>

WHITE PAPER

13 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

CREATING A TOMCAT CLUSTER

Tomcat clustering is quite simple to set up. However,

if you wish to leverage clustering in your enterprise

environment the default configuration is not going to

be the best route for you. To turn on clustering in your

Tomcat server all you must do is add one line of code to

your server.xml.

<Cluster className=”org.apache.catalina.

ha.tcp.SimpleTcpCluster”/>

Adding this line to your configuration enables clustering

with all of the default settings. This would be great if you

were not in an enterprise setting.

You have created a clustered Tomcat instance, but you

only have one instance, so it is not a very big cluster.

Before we create the next instance, we should install the

application we want to test on this cluster.

MAKING YOUR WEB APPLICATION
DISTRIBUTABLE

With your cluster running, placing a normal application

on one server will not trigger propagation to other

servers. The idea behind propagation is that an

application is placed on one node in the cluster, it is

migrated (copied) automatically to other nodes in the

cluster. To achieve this we add the following code to the

web.xml:

<distributable/>

This tells Tomcat that this application is designed to run

on multiple nodes in this cluster.

SETTING UP SESSION REPLICATION

The default session replication mode is “All to All,”

meaning any session data created on a server will be

duplicated to all other servers in the cluster. If your

application creates session data for a user, and you have

a heterogeneous cluster, the session data will still be

replicated across the other nodes.

A heterogeneous configuration is one that does not have

all of the same applications on every node. Therefore,

if application A stores session data for a user, and

application A is running on server A, but not server B,

session data will replicate to server B, even though there

is no use for it there.

CONFIGURING MULTICAST SETUP

The cluster is discovered and maintained via multicast

heartbeats. The server will be set up with a default

multicast IP address of 228.0.0.4 and a multicast port of

45564. This means that any other nodes that are using

the same multicast address and port will see this cluster/

node. It is important to ensure your network supports

multicast. This is commonly blocked for security reasons.

ADDITIONAL CONFIGURATION STEPS

After creating the cluster object and making your web

applications distributable, we need to move on to

configuring other settings.

THE MANAGER OBJECT

The Manager object controls session replication.

<Manager

 className=”org.apache.catalina.ha.session.

DeltaManager”.../>

The DeltaManager replicates all changed session data

to all nodes of the cluster. The BackupManager backs

up session data to a specific backup node. For large

clusters the BackupManager is the option to go with,

for smaller clusters it is common to just use the default

DeltaManager.

WHITE PAPER

14 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

In Tomcat 5, you could not choose the specific session

manager for your application. In Tomcat 10, you can

define a manager in the cluster configuration, as you

could in earlier versions, but you can also define a

manager in a web application’s context.

Defining the Manager in your clustering configuration

provides a default setting for applications that do not

provide their own Manager configuration. For instance,

the following code will set all applications in your cluster

to use the BackupManager for session replication.

<Manager

 className=”org.apache.catalina.ha.session.

BackupManager”.../>

CHANNEL SEND OPTIONS

After setting the Manager, you might need to apply a

non-default channel send options value. Channel send

options is a setting specified on the cluster object. For

example:

<Cluster

 className=”org.apache.catalina.ha.tcp.

SimpleTcpCluster”

 channelSendOptions=”6”>

Channel send options control how messages are sent

between cluster nodes. Are these messages sent

synchronously? Or, in basic terms, does the thread

that sends the message need to wait until the message

has sent before continuing to work, in turn, potentially

making the users request wait on this message to be

sent? Sending the messages asynchronously is when the

thread generates and sends the message but does not

stop and wait for this to happen. Instead, it does this by

spawning a worker thread.

As you can see, this is just one aspect of the channel send

options, and it is a lot of information. To go over channel

send options in detail will require a whole default channel

send mode that is asynchronous.

WRAPPING UP

Tomcat clustering is a powerful tool that can provide the

high availability, reliability, and dependability that your

company requires and all of it can be set up with little

effort. That said, this paper barely scratches the surface of

clustering. What we have provided is a starting point for

your cluster. With the information provided here you can

start a cluster containing two or one thousand nodes, it is

just a matter of determining your company’s needs.

That said, clustering adds complexity. Teams should

expect minor problems along the way, like nodes not

joining a cluster, session information being lost, random

node crashes, and configuration issues.

WHITE PAPER

15 | Apache Tomcat Best Practices

www.openlogic.com OpenLogic by Perforce © Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners. (0520TKP23)

About Perforce

Perforce powers innovation at unrivaled scale. Perforce solutions future-proof competitive advantage by driving quality, security, compli-
ance, collaboration, and speed – across the technology lifecycle. We bring deep domain and vertical expertise to every customer, so nothing
stands in the way of success. Our global footprint spans more than 80 countries and includes over 75% of the Fortune 100. Perforce is trust-
ed by the world’s leading brands to deliver solutions to even the toughest challenges. Accelerate technology delivery, with no shortcuts.
Get the Power of Perforce.

Final Thoughts
From clustering and load balancing to performance

and security, teams that put in the time to optimize their

Tomcat deployments will reap the rewards of secure and

performant web applications. But it is also important to

note that optimizing Tomcat is not a one-time exercise.

Ensuring your Tomcat deployments are kept up to date

and configured to match the changing needs of your

application(s), is an ongoing and often-overlooked

commitment.

While we went over many of the basic best practices

for Tomcat in this paper, there is a lot of ground we left

untouched. Ultimately each web application will have its

own needs, and each Tomcat deployment will need to

be configured and maintained to support those needs in

different ways.

Finding Dependable Technical
Support for Your Tomcat
Deployments
Whether you are planning, deploying, or even

supporting a legacy Tomcat deployment, OpenLogic can

provide the dependable technical support you need to

find success. Learn more about what we can offer your

team by visiting our Tomcat Support and Services

page today.

SEE WHAT WE OFFER

https://www.perforce.com/
https://www.openlogic.com/solutions/apache-tomcat
https://www.openlogic.com/solutions/apache-tomcat

